Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.05.20146936

ABSTRACT

We propose two-stage adaptive pooling schemes, 2-STAP and 2-STAMP, for detecting COVID-19 using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) test kits. Similar to the Tapestry scheme of Ghosh et al., the proposed schemes leverage soft information from the RT-qPCR process about the total viral load in the pool. This is in contrast to conventional group testing schemes where the measurements are Boolean. The proposed schemes provide higher testing throughput than the popularly used Dorfman's scheme. They also provide higher testing throughput, sensitivity and specificity than the state-of-the-art non-adaptive Tapestry scheme. The number of pipetting operations is lower than state-of-the-art non-adaptive pooling schemes, and is higher than that for the Dorfman's scheme. The proposed schemes can work with substantially smaller group sizes than non-adaptive schemes and are simple to describe. Monte-Carlo simulations using the statistical model in the work of Ghosh et al. (Tapestry) show that 10 infected people in a population of size 961 can be identified with 70.86 tests on the average with a sensitivity of 99.50% and specificity of 99.62%. This is 13.5x, 4.24x, and 1.3x the testing throughput of individual testing, Dorfman's testing, and the Tapestry scheme, respectively.


Subject(s)
COVID-19 , Hallucinations
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2007.02695v1

ABSTRACT

We propose two-stage adaptive pooling schemes, 2-STAP and 2-STAMP, for detecting COVID-19 using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) test kits. Similar to the Tapestry scheme of Ghosh et al., the proposed schemes leverage soft information from the RT-qPCR process about the total viral load in the pool. This is in contrast to conventional group testing schemes where the measurements are Boolean. The proposed schemes provide higher testing throughput than the popularly used Dorfman's scheme. They also provide higher testing throughput, sensitivity and specificity than the state-of-the-art non-adaptive Tapestry scheme. The number of pipetting operations is lower than state-of-the-art non-adaptive pooling schemes, and is higher than that for the Dorfman's scheme. The proposed schemes can work with substantially smaller group sizes than non-adaptive schemes and are simple to describe. Monte-Carlo simulations using the statistical model in the work of Ghosh et al. (Tapestry) show that 10 infected people in a population of size 961 can be identified with 70.86 tests on the average with a sensitivity of 99.50% and specificity of 99.62. This is 13.5x, 4.24x, and 1.3x the testing throughput of individual testing, Dorfman's testing, and the Tapestry scheme, respectively.


Subject(s)
COVID-19 , Hallucinations
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.04785v1

ABSTRACT

COVID-19 has resulted in a global health crisis that may become even more acute over the upcoming months. One of the main reasons behind the current rapid growth of COVID-19 in the U.S. population is the limited availability of testing kits and the relatively-high cost of screening tests. In this draft, we demonstrate the effectiveness of group testing (pooling) ideas to accelerate testing for COVID-19. This draft is semi-tutorial in nature and is written for a broad audience with interest in mathematical formulations relevant to COVID-19 testing. Therefore, ideas are presented through illustrative examples rather than through purely theoretical formulations. The focus is also on pools of size less than 64 such as what is practical with current RT-PCR technology.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.03.20051995

ABSTRACT

Background: COVID-19 originated in China and has quickly spread worldwide causing a pandemic. Countries need rapid data on the prevalence of the virus in communities to enable rapid containment. However, the equipment, human and laboratory resources required for conducting individual RT-PCR is prohibitive. One technique to reduce the number of tests required is the pooling of samples for analysis by RT-PCR prior to testing. Methods: We conducted a mathematical analysis of pooling strategies for infection rate classification using group testing and for the identification of individuals by testing pooled clusters of samples. Findings: On the basis of the proposed pooled testing strategy we calculate the probability of false alarm, the probability of detection, and the average number of tests required as a function of the pool size. We find that when the sample size is 256, with a maximum pool size of 64, with only 7.3 tests on the average, we can distinguish between prevalences of 1% and 5% with a probability of detection of 95% and probability of false alarm of 4%. Interpretation: The pooling of RT-PCR samples is a cost-effective technique for providing much-needed course-grained data on the prevalence of COVID-19. This is a powerful tool in providing countries with information that can facilitate a response to the pandemic that is evidence-based and saves the most lives possible with the resources available.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL